منابع مشابه
Locally compact linearly Lindelöf spaces
There is a locally compact Hausdorff space which is linearly Lindelöf and not Lindelöf. This answers a question of Arhangel’skii and Buzyakova.
متن کاملOn component extensions locally compact abelian groups
Let $pounds$ be the category of locally compact abelian groups and $A,Cin pounds$. In this paper, we define component extensions of $A$ by $C$ and show that the set of all component extensions of $A$ by $C$ forms a subgroup of $Ext(C,A)$ whenever $A$ is a connected group. We establish conditions under which the component extensions split and determine LCA groups which are component projective. ...
متن کاملBracket Products on Locally Compact Abelian Groups
We define a new function-valued inner product on L2(G), called ?-bracket product, where G is a locally compact abelian group and ? is a topological isomorphism on G. We investigate the notion of ?-orthogonality, Bessel's Inequality and ?-orthonormal bases with respect to this inner product on L2(G).
متن کامل4 Small Locally Compact Linearly Lindelöf Spaces ∗
There is a locally compact Hausdorff space of weight אω which is linearly Lindelöf and not Lindelöf.
متن کاملLinearly Ordered Radon-nikodým Compact Spaces
We prove that every fragmentable linearly ordered compact space is almost totally disconnected. This combined with a result of Arvanitakis yields that every linearly ordered quasi Radon-Nikodým compact space is Radon-Nikodým, providing a new partial answer to the problem of continuous images of Radon-Nikodým compacta. It is an open problem posed by Namioka [8] whether the class of Radon-Nikodým...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 1980
ISSN: 0022-4049
DOI: 10.1016/0022-4049(80)90014-6